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Abstract. We derive, by a biorthonormal state approach, the analogy of Berry’s phase 
factor for open, non-conservative systems, for both adiabatic and non-adiabatic evolution. 
In the latter case, a (non-unitary) evolution operator method is exploited. An application 
is given to the optical supermode propagation in the free-electron laser. 

1. Introduction 

The subject of the topological phase factor arising in the dynamical evolution of 
quantum systems (as first discovered and  investigated by Berry [l]) has attracted in 
the past few years a considerable amount of interest, from both the theoretical [2-81 
and  the experimental viewpoints [9]. Theoretical developments include, for example, 
the elucidation of the geometrical meaning of Berry’s phase [2-61 and  a number of 
applications to quantum mechanics and quantum field theory [7] (including gauge 
theories and  generalized coherent and squeezed states [ 81). 

Although Berry’s phase factor arises in the evolution of a system interacting with 
a surrounding, virtually all of the existing literature has been concerned with closed 
systems, driven by Hermitian Hamiltonians. It is only recently [ lo ,  111 that Berry’s 
phase has been considered for open, dissipative systems. In [ l l ] ,  such a problem is 
approached in a density-matrix framework, by a superoperator formalism. We want 
here to derive the generalization of Berry’s phase for systems with non-Hermitian (“H) 
dynamic evolution by a biorthonormal-state method, which revealed itself very fruitful 
in the treatment of a variety of physical problems (ranging from multiphoton ionization 
[12-141 to transverse mode propagation [ 151 to free-electron laser theory [ 161). 

The paper is organized as follows. In section 2 we briefly review the biorthonormal 
state formalism for nH Hamiltonians, and  derive a generalization of Berry’s phase for 
n H  systems in the adiabatic approximation. In section 3 we exploit an  evolution operator 
method [17] (suitably generalized to nH systems [14]) to give an alternative derivation 
of the nH Berry’s factor which is independent of the adiabatic hypothesis. An application 
to the optical supermode propagation in the free-electron laser ( F E L )  is given in section 
4. Section 5 concludes the paper. 
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2. Berry's phase for non-Hermitian systems 

Let us con2ider a system ruled by the nH Hamiltonia; (nHH)A(pseudo-Hamiltonian) 
A (A+# H ) .  The two different sets of eigenstates of H and H' 

AI%) = A n l q n )  (2.1) 

Alx,) = A*,lxm) (2.2) 
are biorthogonal to each other (provided the complex eigenvalues A, are not degen- 
erate): 

( x m l q n )  = ( q m l x n )  = a m n .  (2.3) 

IW = c cmlxm) c m =  ( C P m l W  (2.4) 

IW = c cnlcpm) GI= (XmIW. (2.5) 

Any system state can be expanded in terms of either the q s  or the xs as follows: 

m 

m 

Moreover, the closure relation has the form 

Suppose now that A and A* are functions of some set of parameters R( t ) ? ,  which 
are slowly changed. The time evolution of the system is given by the nH Schrodinger 
equation ( h  = 1) 

(2.7) 

We want to study the behaviour of the system in the time interval [0, TI ,  in the 
hypothesis that at the initial instant t = O  it is in an eigenstate of fi, at t = T the 
parameters R are returned to their initial values ( R ( T ) = R ( O ) ) ,  and the adiabatic 
theorem holds. Then, the nH system remains at any instant in an eigenstate of th: 
Hamiltonian fi(t), apart from a damping factor due  to the non-Hermiticity of H 
(and, therefore, to the non-unitarity of the corresponding time evolution). 

Thus, according to the adiabatic theorem and Berry's results, we can write for the 
system wavefunction at time t :  

where ?,,( 1 )  is the nH analogy of Berry's phase, whose expression we want now to find. 
We have, for the time derivative (herafter denoted by a dot )  of 19): 

(here VR is the gradient operator with respect to R) .  On account of (2.1) and (2.7), 
we get 

exp(-iy,,)IV.q,,).R. (2.10) 

+ Clearly, R (  7) is in general a vector in an N-dimensional Euclidean space, but for simplicity we shall 
consider the  case N = 3. 
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Due to the biorthogonality of the fi, fi+ eigenstates, [9(t)) can be also expressed as 

(2.1 1) 

By taking the scalar product of both sides of (2.10) by (2.11), we find 

(Wm= i(Xn/VRcpn).fi (2.12) 

and therefore 

fn ( 0  = i(Xn(R( t ) ) I v R c p ,  ( ~ ( t ) ) )  * R. (2.13) 

The system excursion between the times t = 0 and t = T can be pictured, in parameter 
space, as transport round a closed path C. The total change of 19) round C is therefore 
given by 

(2.14) 

where Tn (C)  is the generalization of Berry's geometrical phase to n H  systems, and reads 

7n(C)=i fc  x * d R = i f c  (Xn(R(t))IVRcpn(R(t))).dR (2.15) 

where A = ( ~ ~ [ V ~ c p , , )  is the nH connection (or pseudopotential). 
A few comments are in order. First of all, let us notice explicitly that, due to the 

non-Hermiticity of fi, yn (C)  is no longer real. Let us recall that, in the Hermitian 
case, the reality of the standard Berry's phase y,, is connected to the normalization of 
the Hamiltonian eigenstates. In the present case, the normalization condition is replaced 
by the binormalization relation (2 .3) ,  thus allowing for a non-real Y,,. Then, for nH 
systems, the transport around C induces a change in the wavefunction, which no 
longer amounts to a mere phase factor. It is easily seen that this result (which agrees 
with the findings in [ 111) is exactly the geometrical analogy of the modification in the 
dynamic factor in passing from Hermitian to non-Hermitian evolution: 

exp( -i lo' E,( t ' )  dt') -* exp( -i 1; A m (  t ' )  dt') 

(E, , ,  y,, real; A,,, y,, complex). As a consequence, we get two damping factors, one of 
dynamic and one of geometrical origin. 

It is easy to realize that the direct evaluation of IVRq,,) in (2.15) can, in some cases, 
present the same difficulties as for the standard Berry phase. They can be avoided in 
exactly the same way, i.e. transforming the line integral (2.15) into a surface integral 
by the Stokes theorem. One has 

P P  

(2.17) 
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where in the last step we inserted the unity decomposition (2.6). The exclusion of n 
in the summation is justified by the fact that, due to the binormalization relation (2.3), 
the vectors (VxnIpn) and (xnJVpn) are antiparallel?. 

Alternative, useful expressions of the off-diagonal elements are obtained by differen- 
tiating (2.1) and (2.2). We get, for instance, 

V(fi)lvn)) = (Vfi)lpn)+ fiIVpo,) = AnlVvn)+ (VAn)1po,). (2.18) 

Multiplying both sides of (2.18) by ( ~ ~ 1 ,  we easily find that 

Analogously, from (2.2), 

Thus, Y,,(C) can be written as 

Y,(C)  = -I/ ds.  v n , ( R )  
S 

where 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

3. The evolution operator method 

In the previous derivation of Berry’s phase for nH systems, we have assumed the 
evolution to occur adiabatically. However, as first proved by Aharonov and Anandan 
[4], the adiabatic hypothesis is by no means necessary in order that a Hermitian system 
develops a topological factor. We want now to show that this also holds true in the 
nH case, by exploiting an evolution operator method [17], suitably extended to n H  

systems [ 141. 
Let us denote by o( t )  the evolution operator associated with the nH Schrodinger 

equation (2.7): we thus have 

I W t ) )  = f i ( t ) l w N ) .  (3.1) 

i - O ( t )  = HU f i ( 0 )  = i (3.2) 

The equation obeyed by o(r) is 

a A A  

at  

Of course, fi is not ynitary, and therefore fiCt Z f. Let us introduce the (non-unitary) 
evolution operator 6(t)  associated to A+. I t  can be shown [14] that 

(3.3) 06. = 6 . g  = f 
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which implies that the states 

i ~ n ( t ) ) =  O ( t ) I q n ( O ) )  i X n ( t ) )  = fi(t)iXn(0)) (3.4) 

are biorthogonal states at any instan: (notice, however, that, in general, they are no 
longer instantaneous eigenstates of H). 

Let us define the matrix elements of any nH operator a with respect to the 
biorthonormal states \,ym), 19,) as 

4 

A m ,  = ( ~ m l A l c ~ n ) .  (3.5) 

Then, it is easily seen that a can be diagonalized with respect to the biorthogonal 

At = @A@ (3.6) 

(see, for example [13] for the explicit form of @, W ) .  Instead, the adjoint operator 
A' is diagonalized by the transformation 

set by a biunitary transformation [13, 141: 

(3.7) ,+, = @+A+ W. 

A m ,  =(PmIAIxn)* (3.8) 

The converse is obviously true if the matrix elements of A are defined as 

We assume now that both the evolution operators fi and 6 can be written as products 
of two non-unitary operatorst, i.e. make the ansatz 

O ( t )  = s ^ ( t ) R ( t )  (3.9) 

6(t)  = 5 ( t ) k ( t )  (3.10) 

(? # & I ;  E' # k';  5- # 5-I; k +  # R - I ) .  From (3.3), it follows that 

3.3 = s^j+ = f g + i  = R A +  = f  (3.11) 

Inserting (3.9) in (3.2), and using (3.10) and (3.11), we easily get 

(3.12) 

(3.13) 

which obviously is not Hermitian. 
It is easy to see that the non-unitary transformation induced by s( t ) ,  i.e. 

I W t N  = 9(t)lW)) (3.14) 

leads from (2.7) to the new n H  evolution equation 

i ; I W ~ ) )  = %t)I@(t)) 
a 

(3.15) 

t Clearly, this can be done in infinitely many ways. 
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in which the operator & ( t )  defined by (3.13) plays the role of pseudo-Hamiltonian. 
The formal solution of (3.15) reads? 

IO( t ) )  = exp -i &( t ’ )  dt’  IO(0)) ( i: 1 (3.16) 

and therefore, in the original representation, 

I‘u( t ) )  = s*( t )  exp (3.17) 

To explicitly solve (3.16) and (3.17) we have to assume that & is diagonalizable 
in the biorthonormal basis Ix,,(O)>, Iq,,(O)), according to (3.5) and (3.6). This is clearly 
true if and only if l? and R’ are diagonal in the same basis. By putting 

R m n ( t ) =  hfl exp(e,(t)) 

with 8, complex, we get, on account of (3.11), 

R ~ ,  = i8,,e,,. 

For an initial state IW(O))= Iqn (0 ) ) ,  we have, from (3.12), 

(3.18) 

(3.19) 

(3.20) 

and therefore 

8, = -i(xn(o)15+fis*jq,,(o)) - (x, (o)lS+41q, (0)). (3.21) 

After integration, we find the expression of the complex phase 0, : 

e,(t) = -i (Xn(f’)lGlqn(tO) dt’-  ( X n ( t ’ ) l d n ( t ‘ ) )  dt’  (3.22) 

where, hereafter, the time-dependent states are obtained by the action of the operators 
i, S. Then, (3.17) becomes 

(3.23) 

jot I: 
I W t N  = exP{-ir,D(tH expIi7, (t)}lqO,( l ) )  

where 7: and 7, are the nH dynamic and topological phases, given by 

(3.24) 

Notice that in the derivation of (3.24) and (3.25) we made no recourse to the adiabatic 
hypothesis; in other words lq, ( t ) )  is not, in general, an instantaneous eigenstate of H. 
Clearly, in the assumption of an adiabatic evolution of the system, for fi = k ( R (  t ) )  
and for a closed path in parameter space, we recover the expressions (2.8) and (2.15) 
of the n H  Berry phase. 

t However, let us stress that the actual evaluation of the exponential operator in (3.16) and (3.17) involves 
problems of time ordering (because the operators % ( t )  do not commute at different times). 



Cyclic evolution of non-Hermitian systems 5801 

Let us stress that the importance of the evolution operator approach developed in 
this section lies not only in its independence of the adiabatic hypothesis, but also in 
the fact that one can take advantage of well-stated techniques of operator ordering 
[18] (like the Wei-Norman method) (suitably extended to nH systems [14]). 

4. Non-Hermitian Berry’s phase in the free-electron laser supermode propagation 

We want now to apply the results of the previous sections to the optical pulse 
propagation in free-electron laser ( FEL).  

For the reader’s convenience, let us recall the main F E L  physics [19]. The FEL is a 
coherent source of radiation in which the active medium consists of an ultrarelativistic 
electron beam moving in a magnetic undulator with N periods and wavelength A,. 
The emitted radiation is stored in an optical cavity and reinforced by a new copropagat- 
ing electron beam. In F E L ~  driven by radio-frequency ( RF) accelerators, the electron 
beam has a structure characterized by a series of microbunches (of longitudinal length 
cz) with a distance fixed by the RF period. The bunched structure of the electron beam 
induces an analogous structure in the optical field. 

Therefore, to have self-sustained laser action, the electron and optical bunches 
must be synchronized in such a way that after one round trip the laser bunch overlaps 
a freshly injected electron bunch. 

A typical configuration for an R F  operating FEL is shown in figure 1. Due to the 
different speeds of the electron and laser bunches, the FEL exhibits the so-called 
‘lethargic’ behaviour, i.e. the front side of the optical pulse experiences less gain than 
the backward part, so that the centroid of the laser pulse is slowed down. This lethargy 
effect affects the synchronism condition: to have timing between the electrons and 
optical field one must reduce the length of the cavity by a quantity 6L to compensate 
for the velocity reduction of the laser pulse. 

Figure 1. Typical FEL configuration: full line, electron bunch; broken line, laser bunch; 
M , ,  fixed mirror; M z ,  movable mirror; L, = L, + L, + LI. total cavity length; SL, cavity 
mismatch. 

The propagation of the optical field in a RF-operating FEL can be accounted for 
by means of an expansion in longitudinal modes of the optical cavity. Because of the 
very large numbers of interacting modes (typically a few thousands), it is practically 
impossible to follow the single mode evolution and it has been proved convenient to 
analyse those clusters of longitudinal modes (‘supermodes’) which reproduce them- 
selves unchanged after each round trip (although their phases and amplitudes can 
vary) [19]. These FEL supermodes have been shown to be the eigenfunctions of an 
integrodifferential equation, which can be reduced to an nH Schrodinger-type equation 
[16] in the hypothesis (verified in most of the experimental cases) that the slippage 
( A  = NA, A being the resonant wavelength) is small compared to the R M S  electron 
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bunch length vZ. Indeed, in this case the FEL pulse propagation in the forward z 
direction can be cast in the form [16] 

a 
- E F ( z ,  7) = I ~ E ~ ( z ,  7 )  
a7  

(4.1) 

where EF is the forward propagating, slowly varying part of the optical electric field, 
2 is essentially the longitudinal coordinate,!he dimensionless time T is a discrete time 
related to the number of round trips, and H is the nH Hamiltonian, 

(4.2) I2 = R I  I?, + n,R- + 036 + n,i 
with? 

(4.3) 

Moreover, the ais ( i  = 1,2 ,3 ,4)  are complex functions, depending on the FEL physical 
parameters (see table 1): 

The parameter 6 is related to the cavity desynchronism necessary to compensate for 
the lethargic effect. Moreover, GI is the complex gain function 

and G,, G, are given by 

The adjoint of is obviously 

A+=nTI?++RTR--n:a^+n4*i. 

Table 1. List of the symbols used for the FEL optical propagation in section 4. 

resonance parameter 
R M S  longitudinal bunch length 
number of passes 
optical cavity length 
resonant wavelength 
slippage distance 
coupling parameter 
cavity detuning ( L ,  - SL =effective cavity length) 
gain coefficient 
cavity losses 
delay parameter 

+ Equation (4 .3)  is easily seen to express the coordinate representation of the annihilation operator a  ̂ and 
of the ladder operators of the SU(1, 1) algebra. Indeed, the R H S  of (4.2) is readily recognized as an element 
of the semidirect sum SU(1,  I ) @  h(4)(h(4)  being the Weyl-Heisenberg group). 
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The eigenstates of fl and A' read, respectively, 

(4.8) 

(4.9) 

where H,,( e )  are the Hermite polynomials, N,,, #,,, are normalization factors and 

(4.10) 

The parameter 2, represents the shift of the laser packet with respect to the electron 
bunch. The eigenvalues of f i  have the form 

1 
A,, = G, -?- ( n  + ; ) w c d Q G - -  (G, - a)*+O(pf). 

g o  2 G4 

As shown in [16], the set of states (P,,, x,, is a biorthonormal one: 
+X I Xm(z)qc,(z) dZ=Smn 
-U 

provided that the normalization constant is chosen as 

(4.11) 

(4.12) 

N,,, = fiz = exp[(m +f) tgh-'(w2)] (4.13) 

with w 2  = 1 - p c m .  
Let us evaluate the nH Berry's phase for the FEL supermode system. In this case, 

the problem is one-dimensional, the parameter being now Z = Z (  7). A straightforward 
application of (2.15) then gives (VR = a/az): 

(4.14) 

independent of n. 
Let us further clarify what it physically means, in the context of FEL operation, to 

perform a closed path in a one-dimensional parameter space. Firstly, since the time 7 
is a discrete dimensionless time, related to the cavity round-trip period, the quantity 
which is adiabatically changed is actually the delay parameter 6 (connected to the 
cavity mismatch SL from the nominal round-trip condition: see table 1). Then, using 
as reference packet the electron bunch, the optical packet will perform, varying 6, a 
closed path around the maximum of the electron bunch distribution (see figure 2) or 
better a back and forth trip between the positions of maximum overlapping between 
the electron and laser bunches (Z = -AI2 and Z = A/2, A being the slippage). 



5804 G Dattoli, R Mignani and A Torre 

t 

- A / 2  0 A I 2  Z 

Figure 2. Schematic representation of the back and forth trip of the optical bunch between 
the positions of maximum overlapping with the electron bunch (full line). 

Morever, it must be explicitly noticed that, in the FEL cas:, the existence of a 
topological phase is strictly related to the non-Hermicity of H, which, in turn, is 
essentially linked to the operator 

(4.15) 

i.e. the velocity term contribution to the FEL propagation equation. 

G3 - 4 of the velocity term (4.15) implies a null n H  Berry’s phase. Indeed, when 
It is immediately seen from (4.14) that the vanishing of the complex coefficient 

Re G3= 8 then Im G, = 0. (4.16) 

The FEL pseudo-Hamiltonian (4.2) is (almost) Hermitian? and the supermode system 
is no longer biorthogonal [16]. Let us recall that, from a physical point of view, the 
first of (4.16) is the condition to compensate for the lethargy effect due to the slowing 
of the radiation velocity [ 191. 

Finally, it is to be stressed that the FEL provides an example of a classical system 
(obeying an n H  Schrodinger-like equation), able to develop geometrical phase factors 
(see [20] for other examples of classical systems exhibiting a Berry’s phase 
phenomenon). 

5. Conclusions 

We have exploited an approach based on the biorthonormal properties of the eigenstates 
of an N H  operator and of its adjoint to study the evolution of non-conservative systems. 
We have shown that the wavefunction of a system ruled by an n H  Hamiltonian and 
transported around a closed path in parameter space acquires, besides the standard, 
dynamical phase, a topological phase as well. This n H  analogy of Berry’s phase is, in 
general, complex, thus implying two damping factors (time dependent and path 
dependent) for the open-system wavefunction. Our result holds for both adiabatic and 
non-adiabatic evolution. In the latter case, the expression of the n H  Berry’s phase has 
been derived by a non-unitary evolution operator method. 
t Actually, the gain functions G, become almost real ( Im G - 0) at vu = 2.6 (where the FEL gain is maximum), 
see [19]. 
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We have applied our  results to the optical supermode propagation in the FEL, which 
is described, under suitable approximations, by an  nH Schrodinger-like equation. The 
related Berry’s phase is connected to the non-Hermiticity of the F E L  Hamiltonian (i.e. 
to the so-called lethargic behaviour of the F E L ) .  

Finally, let us briefly notice that the n H  topological factor allows an interpretation 
analogous to that of the standard Berry’s phase, i.e. it is nothing but the (complex) 
holonomy associated with the connection on a complex fibre bundle. These geometrical 
aspects of the n H  Berry’s phase will be discussed elsewhere. 
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